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To solve boundary-value problems for elliptic equations, the boundary analogue of the method of least squares is replaced by a 
boundary analogue of the collocation method. The change is made using a discrete representation of the scalar product in the 
spaces of functions which, in the case of a smooth boundary, are integrable with their square over the boundary of the region, 
and of functions which, in the case of a piecewise-linear boundary, are integrable with their square, when weighted, over the 
boundary of the region. The method used to choose the collocation points which ensure the collocation method to be stable is 
justified for the case of the Dirichlet problem. © 1998 Elsevier Science Ltd. All rights reserved. 

The use of a boundary analogue of the method of least squares to find the coefficients of the expansion 
of an approximate solution of a boundary-value problem in series of powers of global basic functions 
was considered in [1, 2] and proved to be stable for the Dirichlet problem in regions with smooth and 
piecewise-linear boundaries. 

This has a number of advantages over existing methods. It allows a reduction of one in the Euclidean 
dimension of the problem and does not require discretization of the region, which leads to a simpler 
algorithm and has advantages in the case of problems with changing boundaries. The method yields 
systems of linear algebraic equations with a well-conditioned matrix. Among its drawbacks is the fact 
that there has been little research on the relation between the rate of convergence and the smoothness 
of the boundary. The range of problems to which the method can be applied is restricted to boundary- 
value problems for linear elliptic differential equations with constant or polynomial coefficients. 

The method devised in [3] combines an exact solution in blocks with an approximate solution found 
on the boundaries of blocks which cover a polygonal region. 

1. THE B O U N D A R Y  A N A L O G U E  OF THE M E T H O D  
OF LEAST SQUARES 

The method used to solve boundary-value problems for elliptic differential equations in [1] involves 
expanding the solution in powers of global basis functions of the kernel of the differential operator. It 
leads to a boundary-value problem for a homogeneous differential equation with a corresponding non- 
homogeneous boundary condition 

Lu=O, x e  fl, EICRn; lulr=h(y), y ~  F (1.1) 

where F = 0fl is a Lipschitz boundary, L is an elliptic differential operator with constant coefficients 
and l is a boundary condition operator. The approximate solution u (/~ of problem (1.1) is sought in 
the form 

N 
u(O)(x)= Y. a~O)~tk(x), x~El ,  ~l/~(x)ekerL (1.2) 

k=l 

Here and in Sections I and 2 below k = 1 . . . . .  N. 
The coefficients a~ N) can be found using a boundary analogue of the method of least squares (BAMLS) 

[4] from the condition 

min Ilut~)-hll~<r) (1.3) 
Ul,a2,...,a N 
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Here V(F) is a real Hilbert space in which the norm is generated by the scalar product (., ")v(r). 
Condition (1.3) leads to a system of linear algebraic equations 

G(N)a (N) = h (N) ( 1 . 4 )  

where the vectors a (~), h (~ have elements a~ (~, h~ N) = (h, lWt)v(r), respectively, and G (~ is the Gram 
matrix of the first N elements of the system q~ = {Wl . . . .  , WN . . . .  } in Hilbert space with the scalar 
product (l., l')v(r}. 

In most cases the system q~ turns out to be non-orthogonal, and so the main issue is the stability of 
the method. The stability of the BAMLS, as defined in [5], depends only on the properties of the system 
~F in the corresponding Hilbert space. A necessary and sufficient condition for the BAMLS to be stable 
is that the system q~ must be strongly minimal in a space with scalar product (I., l')v(r), or in other words 
that there should be a positive number k0 for which 

ko < ;~(G~), VN ~ 

where )~nin(G (N)) is the smallest eigenvalue of the matrix G iN) [5]. 

Remark 1. If L is an elliptic differential operator with polynomial coefficients, a system of polynomials which 
satisfy a homogeneous differential equation can be constructed. 

2. THE T R A N S I T I O N  TO THE BOUNDARY A N A L O G U E  
OF THE COLLOC AT ION M E T H O D  

Let f~ C ~z, F = ~f~, V(F) = L2(F). We will consider the transition from the BAMLS to a boundary 
analogue of the collocation method based on the use of quadrature formulae. The elements of the matrix 
G (~ are defined by the expression 

I 

G~ N) = (Iwi,lwj)2,r = ~ Iwi(xl(s}, x2(s)) lwj(xl(s  ), x2(s})dFfs) (2.1) 
0 

Here and everywhere below, unless otherwise stated, i, j = 1 , . . . ,  N. 

Let dF(s) = ~(s)ds, ~(s) ~ C~([0, 11), l~i(xl(s)) • C®([0, 11). Applying the Gauss quadrature 
formula with N nodes sk (~ • [0, 1] and coefficients A~ ~ to (2.1), we obtain 

N 
(/~,,tYj}~,r = ,T_, A(~N)l¥1(x~(s(~N)}, x2(s(~N)))lWy(x~(s(u)), X2tZS(N)""S(N)) /It, ~ q (2.2) 

k=l 

where ~ B ~  is the error of the quadrature formula. 
' , J  . 

We now introduce the notauon 

~Ik 

Then the system of linear equations of the method of least squares (1.4) can be put in the form 

( B  (N) + 5 B ( m ) a  (N~ = h(N) + 811 (N) 

where the elements of the matrix B (~ and the vector h CN) are 

(2.3) 

'~ ~ h , ,  t..(N) , , ( N ) ~ ~ h , ,  t.(N) .(,V)~ 
"" = ~ "~l'tk I k  t'q~il,'S'lk ' " 2 k  ) '~" t k  [ k  t '~j~,'~'|k , ""2k J 

k=l 

~. Acm,,~mh., t .cm cm c~) • = _ ,~ I ,  ,,vi~-'-ik. x2, )h(s, ) 
k=l  

and 8h~ ~ is the error of the quadrature formula in calculating the rilzht-hand side of the system 
when the ~7 method of least squares is used. We note that the matrix B can be written in the form 
B (u) = K(N)[K(~] 7", where the elements of the matrix K <N) have the form 

K(N)  _ ]a(N)~,(N)h,,  t~(N)  ~(N)~ (2.4) 
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We will denote by It(M) the condition number of the matrix M with respect to the second matrix 
norm: ~t(M) = II M [12 II M -1112. We know [6] that 

I.t(B ~m) = la2([Kcm]r), II([K0V)]r)-nll2 = ~ni.~n(B (N)) (2.5) 

Let ~(~ denote a solution of system (2.3) and let ~(~ denote a solution of the system 

B<'V)a ~m = h °v) (2.6) 

A theorem which gives the sufficient conditions for convergence can be obtained from the relation [5] 

3 

I1~ (~) _i0V)ll2 ~< C~dn(GOV))IISB0V)II2 +~in(G(N))llSh(N)ll2 
1 - k~.n (G(r¢))ll 5Bft¢) 112 (2.7) 

Theorem 1. Let the system ~F and the quadrature formula used for the approximate computation of 
the integral (2.1) be such that 

lim [ ~m3i/Jn (G(t¢))ll 5Bf'V) 112 ] = 0, lim [2~in (G(~))llSh(~')ll2 ] = 0 
N...~oo N -.-).co 

Then limN__,~ [1[ ~(N) _ ~(N)112 = 0. 

Remark 2. For strongly minimal systems, it is sufficient that 

l im[N max 16B (N) I]=0, lim[N max IqSh~ N, I]=0 (2.8) 
N-.-~** L i,j=l,2,...,N N--.~*~. j=I ,2 , . . . ,N 

This follows from the estimate [[. 112. 
The quantities ~B~ ~ and ~h~ u) are the errors in using the quadrature formulae for integrating functions of the 

form l~gi(xl(s), x2(s))lVj(xl(s), x2(s))T(s) and h(y(s))/Vy(xl(s), x2(s))7(s), respectively over the segment [0, 1]. The 
rate of convergence of the quadrature formulae depends on the order of smoothness of the integrands. Thus, if [7] 

- • s  [hgi (x I (s), x 2 (s))l~j (Xl (s), x 2 (s))y(s)] e Lip([0,1l) 

d[h(y(s))l~j (x I (s), x 2 (s))¥(s)] E Lip([0,1]) 

(2.9) 

where Lip([0, 1]) is the class of functions which have Lipschitz properties on [0, 1], conditions (2.8) are satisfied. 

Remark 3. Condition (2.9) is satisfied if ~l(xl,x2), V2(xl,x2) . . . . .  h(y) and 7(s) are infinitely-differentiable functions. 

Consider the system of functionals 

1 

Wj(W) = S ¥(s)w.i(s)T(s)ds (2.10) 
0 

We will find the coefficients of series (1.2) from the condition [4] 

Wj(~=, a~')l~/,-h)=0 (2.11) 

We choose functions wi(s) in (2.10) for which (2.11) is a system of linear algebraic equations in a (N) 
with matrix K (N) defined Joy (2.4). We put 

w~N)(s) = ~/A~ N) / T(s)~(s- s5 ~¢)) (2.12) 

where 8(.) is the delta function and sff ) are the nodes of the quadrature formula. Then system (2.11) 
can be written in the form 

[K~N)]ra~N) = h(:¢) (2.13) 
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The elements of the matrix K (~ are defined by formula (2.4), and the elements of the vector h -(N) are 

-(~) = t'c'/X)~ A(x/~-b'T~(~O (2.14) h j  "'~.'j J ~ " j  l j  

The solution of the system for the collocation method (CM) (2.13) is the same as that of (2.6) and 
converges in a Euclidean norm, as N ~ ~, to the solution of (1.4). We have thus found basis functions 
for which the collocation method converges. 

Remark 4. The matrices B (~ and 8B (~ are Hermitian, and it thus follows from Weyl's theorem [6] that 

I ~'max (G(N) ) - ~'max (B(N)) I~I ISB(N) 112, i ~m i  n (G(h ' ) )  _ Xmin (B(N))In~IIb-]B (N) II 2 

But as H SB(~ 112 ~ 0 from (2.5) we have 

lim i~([Kt~)lr)= lim Vla(G (N)) 
N--)oo N--~*o 

Remark 5. If n > 2, the transition to the boundary analogue of the CM is made using cubature formulae. The 
results are similar to those for n = 2. 

3. T H E  D I R I C H L E T  P R O B L E M  IN R E G I O N S  
W I T H  S M O O T H  B O U N D A R I E S  

Let Au = 0 and Q C R 2, F = ~ ,  Uir = h ( y ) , y  ~ F. We take W to be the system 

{ 1, Rez, Imz, Rez 2, lmz 2 .... }, z = xl +/x2 

The convergence of the BAMLS with respect to system (3.1) and its strong minimality are proved 
in [1]. Let the boundary of the region f~ be given parametrically: F = {(xl, x2)Pq = x~(s), x2 = x2(s), 
s E [0, 1]}. If the functionsxl(s), x2(s) E C~([0, 1]), then the system of linear algebraic equations of the 
CM with weight functions (2.12) is solvable for any order of approximation, the CM converges, and 
Remark 4 regarding the condition number of the matrix of the system applies. 

4. T H E  D I R I C H L E T  P R O B L E M  IN R E G I O N S  W I T H  
P I E C E W I S E - L I N E A R  B O U N D A R I E S  

We now consider the Dirichlet problem in the region f~ C ff~2 with a piecewise-linear boundary F. 
In this case 

L 
r=ur. 

hi=| 

where V m = {(X1,X2)[Xr = Xrm(S) =- armS + brm, r = 1, 2, s ~ [Sin, Sm+l]}. 
We shall assume that s E [0, 1] and, therefore 

(4.1) 

L-I 
O [s.,,s.,+l]=[O, 11 

m=O 

Let ne% be the interior angles of the region f2 at points (xl(Sm),X2(Sm)) (m = 1 , . . . ,  L). We introduce 
a Hilbert space with weight L2(F; p), where 

L 
p(s )  = 1-1 [(xl ( s ) -  x~ (s=))2 + (x2 ( s ) -  x2 (sin))51t1~,,,-1 

hi=0 

In [1] we proved that system (3.1) is strongly minimal in L2(F;p), we considered how to use the BAMLS 
to find an approximate solution of the Dirichlet problem, and we gave an error estimate analogous to 
the Runge estimate for the scalar product computed over the boundary. 

In order to construct the basis functions of the CM for which the system is solvable and the method 
converges, and which also give some indication of how the condition number of the matrix of the system 
of linear algebraic equations of the CM behaves, we write an expression for the scalar product in L2(F;p) 
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I 

(Vi, Vj)2.r;t, = ~ ¥ i ( x t  (s), x 2 ( s ) )¥  j (x I (s), x 2 (s ) )p(s)y(s)ds  = 
0 

= Z ~/~j(xj,.(s), 
m=O 

X2m ($))Pl= ($)($ -- Sm) 1/am-I "~m ($)d$ + 

02m 

+ I Wij(Xlm( s)' x2n , (s ) )p . (s )¥m(s)ds+ 
01m 

sin+ I 1 + ~ ~llij (Xl m ($), X2n, ($))Pra ($)(Sm+l - $) l/a'n÷l-I Yra ($)d$ 
02m 

(4.2) 

pro(s)= p(s),  s,. ~ s << - s,.+l, plm(s)= p , . ( s ) l ( s - s m )  Imm-! 

P2n, (s) = p., (s) / ( s in+ ! - s )  I /am+l- !  

Ym(S)=4a21ra+a2 m, sm <Olra <O2m <Sm+l 

~lij(Xlm($), X2m($))=¥i(Xlm(S) ,  X2m(S))¥j(Xlm($), X2m($)) 

The unweighted Gauss quadrature formula is used on [0ira, 82m], and the Gauss quadrature formulae 
with weights (s - s in )  u~m-x and (Sm+] - s )  ]/°~+t-l, respectively, on [sin, 01m] and [02m, sin+a]. Then (4.2) 
can be written in the form 

---- {"In ~ij (Xl Into, X21 nm )el m ($1nm)Ym ($1mn) + (Wi, W/)2,r;p m=O l.n=l 

Cn Yq(Xlmn,X2m)Pm(Sran)Ym(Sran)+ 
n=l 

N N oNz= +.:,'~ C2~'¥.(x,2=,x22=)P2.Cs2..)Ym(s2=)+ Rim#~ + R;~i7 +"2,.0 ~ (4.3) 

where sl n, C1Nlm are the nodes and coefficients of the Gauss quadrature formula with weight 
(s - sin) 1/6~-1 (n = 1 . . . .  , Nlm), s,,~, CNn m are the nodes and coefficients of the unweighted formula 
(n = 1, . . . , Nm), and s~ , ,  C2~ z~ are the nodes and coefficients of the formula with weight 
(Sm+ 1 -- S) ]/Ixm+l-1 (n = 1 . . . . .  N2m), Xrqmn = Xrm(Sqmn) (n = 1 . . . . .  Nqm), Xrmn = Xrm($mn) (n = 1 . . . .  , 
Nm); r, q = 1, 2, m O, , L ,  where Xm=0(Nm + Nlm + N2m) = N,  equal to the number of basis 
functions. We will refer to the points x] iron, Xlmn, Xl2mn as Xlk , the points X21mn , X2mn, X22mn as X2k and the 
points siren, Sm~, S2mn as sk, and write Eq. (4.3) in the form 

N 
D~ ¥ij(xlt ,x2k )P(s k )y(s k 

k=l 

[ p lm(s t~ ) ,  for k corresponding to (l,m,n) 

P(sk ) = ]Pm (sin.), for k corresponding to (m, n) 

(p2m(S2m.), for k corresponding to (2 ,m,n)  

r rNlm l .q. , . for k corresponding to (1,re,n) 

D~ m = lC~ ' ,  for k corresponding to (m,n)  
/r~2~ L,.2m , for k corresponding to (2,m,n) 

t. 
- - u t .  u ,  . . . u 2 ,  • R(N) = X [Kimij + e~.; q" K2mij J 

ra=0 
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In this case, for the system of linear equations (2.3) 

B(N~ = K(N)[K(N)] r 

=~O~ T(sk )P(s t )Wi(xlt ,x2k ) (4.4) 
g ~ )  ~N) (N) (N) (H) (~,) 

h~JV) ~ nOv)~r, r.(Iv)xx~,, r ~Ov) .(s)x.~(s) 
k=l  

and 6B~,j ~ = R~ N), 6h! ~ are the errors of the quadrature formulae. We select the weight functions in 
(2.10) as 

I D(~) pt s(S)~ 
w j ( s ) - ~  ~ .,,,o-oj , (4.5) 

and obtain a system of linear equations (2.13) in which K (~ is defined by formulae (4.4), and the elements 
of the vector of the right-hand side are given by the formula 

"hi (N, =h($~lv))4O)~V)y(s~t~))P(s~N)), i= 1 ..... N 

Let ~(N), g(N) be solutions of system (2.3), (2.6) for (4.4). We note that ~(N) is the same as solution 
(2.13) for (4.4). If in (2.7) we denote the Gram matrix of the first N elements of the system {~l/i}i=l, 2 . . . .  

in L2(F;p) by G (N), the sufficient conditions for the CM to converge are obtained. The strong minimality 
of system u/in L2(F; p) has been proved [1]. 

Conditions (2.8) will be sufficient for the CM to converge. Consider the first limit of (2.8). Since 
8B/(j N) = R~j N), we have 

I. L rR(N, , , )  . o( lv, , , ,  ) .,. o(t¢2.,)1 ~ lim ~ ~ (Nm +Nim + N 2 m )  ~ ~,,~j "s',-inaj = 0  N"~'~m=O m=0 1- "'2~ JJ  

L 

Nm=~,nN, Nlm=~lmN, N2mffi~2m N, ~ . (~m+~,m+~2m)=l  (4.6) 
m r 0  

We require 

Since the function P(s) is infinitely-differentiable, and the functions xl(s), x2(s) are piecewise-linear 
along each integration segment, the first condition of (2.8) applies. If 

d[h(y(s) ) ]  e Lip([s m,0 Im]) 

~ [h(y(s))] e Lip(t01m,02m]) (4.7) 

~[ h(y(s))] ¢ Lip([02m, sin+ ! ]) 

the second condition of (2.8) also applies. This yields the following theorem. 

Theorem 2. If conditions (4.6) and (4.7) are satisfied, then 

lim I1~ (~) - i ( N ) l l 2  = 0 

It has been established that the CM converges. A similar comment to Remark 4 can be made regarding 
the condition number of the matrix of the system obtained by the collocation method. 

The choice of the points 0rm (r = 1, 2, rn = 0, 1 . . . . .  L) between segments on which the weighted and unweighted 
quadrature formulae are applied is important. It is better to choose them so that the integration errors on each 
of the segments [Sm, 01m], [01m, 0Era], [02m, S,,+I], m = 0, 1 . . . . .  L are of the same order. The estimate obtained 
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on the basis of the Runge estimate in [1] is invalid, because it cannot be assumed, as the number N of basic functions 
increases, that the respective derivatives of the inte~rands on each integration segment are constant. This is because 
the basis functions of system u? have the form: [x'(s) + y2(s)]ki2COS kw(s), [xZ(s) + y2(s)]k/2, where k = 1, 2 . . . . .  
N/2 and W(s) is the angle between the radius vector of a point on the boundary (x(s), y(s)) and the Ox axis. As N 
increases, they will oscillate over the integration segments. 

We define the points 0 ~  (r = 1, 2, m = 0, 1 . . . . .  L)  to give equal error estimates of the quadrature 
formulae in each of  the intervals [sin, 01m], [01m, 02~], [02,n, sm÷l] (m = 0, 1 . . . . .  L). We put F(s) = 
Vi:(Xlm(S), X2m(S)) and consider the integral 

• o r e2 .  
F(s)p(s)ds= F(S)Plm(s)(S-Sm) f~-ds+ S F(s)pm(s)ds+ 

sm snt Olin 

+ S ~  I i = 
F ( s ) P 2 m ( S ) ( S m + l - s ) f J m + l d s ,  ~ k = O t k  I l ,  k m , m + l  (4.8) 

02m 

~ N l m  ~ N m ~ N2, n - Let/~lrn , -/Kin , / (2M oe the errors of the Gauss' quadrature formulae for the integrals on the right- 
hand side of (4.8), where the first and third integrals are found using weights (s - sin) ~m, 
(Sm+l - s) f~'+l of orders Ni t  a and Nz.n, respectively, and the second using unweighted formula of 
order Nm. Then [7] 

iRmU, i~< 1 max [ d2N" I os" -~T~[F(s)p(s)]  j o~,.(s)ds (4.9) 
(2N,,)! sG(0I,.02,,)[ 0,m 

where ¢ONm (S) is the root polynomial of the unweighted Gauss quadrature formula. Calculating the 
derivative of order 2N m of the integrand F(s)p(s) 

ds21%, [ F ( s ) p ( s ) ]  = j=0 

k=0 kKJ t=0 Vm Vm+i ~ , o - -  a m # X O m + l  

l = - t + l )  

and also introducing the notation 

p =  max s u v  Ip2)(s)l, F =  ss~.ll IF(Jl(s)l 
m=0.1 ..... L s e~ Sra .~m'¢'l ) 

j~[0.2Nra] j¢[O.2Nra] 

K.,= x t.tj>.,. >.,.+, j=ok J )k=O k ,=o 

from (4.9) we obtain 

# 

Fig. 1. 
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1 
I R~ '~ I~ (2 N,. ) ! pFKm max~'l'k2E[0'2/% ] supse(%"e2") qJm (s, ~'t, Z2 ) 

q'm (S, X l, X 2) = (S -- S=)I~'-Xl (Sm+t -- S) p'÷t-~'~ 

We introduce the notation 

$m = (Pm+l -- •2)$m+1 + (~m -- ~'l )$ra 
I~= + I~.+1 - Xt - k2 

and note that (~Fm)'s(S*, ~'1, ~L2) = 0 for ~'1 + ~'2 #: ]~m 4- ]~m+l" Since the internal angles of the boundary 
F of the region f~ lie in the range (0, 2r 0 we have OL m E (0, 2) and 13 m E (-1/2, +~) .  

We will consider the behaviour of the function qJm in the segment [0~m, 02m] and the position of the 
point s* relative to points 01m, 02m in three cases (Fig. 1): when 13 m - ~1 < 0, 13m+1 - ~'2 > 0 (curve 1), 
S~n E [01m , 0Zm], ~m -- ~L1 > 0, I~m+l -- ~'2 > 0 ( c u r v e  2) a n d s *  $ [01m , 02m], ~m -- ~'1 > 0, I~m+l -- ~'2 > 0 
(curve 3). 

For these cases, the estimate of the error when evaluating the second integral on the right-hand side 
of (4.8), using the unweighted Gauss quadrature formula, is 

i R Nm i<~ pFK,,,TmX=(O~m,02,,,) / (2N m)! (4.10) 

~m(Oim,O2m ) = max~h~7+t -2Nm,  

/ 
tl~nl, 

for ~= > 0, 13=+ t > 0 

for [~ra+l > O, ~m -- 2Nm < 0 

for ~,n > 0, ~m+t - 2Nm < 0 

for 13,n - 2N= < 0, Bm+l -- 2Nm < 0 

~., = maxIh~-2N" (~,,,)p,,,+t-ZN,., ~;.,+t-2N. (~.,)I~.,-2N,. } 
hi., =Ot,. - s.,, h2m=s. ,+l -O2. ,  ~m =(s,.+l - s , . ) /  2 

T,, = (N m) !4 [(2N=)! 2 (2Nrn + 1)1-1 (Sm+l - sm)2U'+l 

The error estimates for the first and third integrals on the right-hand side of (4.8) can be obtained 
in the same way. 

By equating the resulting estimates, we obtain the points 01.n, 02m between the segments of integration 
for the weighted and unweighted Gauss formulae. We can then find the nodes of the weighted and 
unweighted quadrature formulae and, using (4.5), obtain a CM with the stability property which gives 
a sequence of approximate solutions converging to the exact solution. 

!I \ \ \  

=1 
~7 

U--#,I 
t 

\ , 
- - . - - 1 1 - " 1 . 3  

IZ -" O.S 

f g 

Fig. 2. Fig. 3. 
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5. A P P R O X I M A T E  S O L U T I O N  O F  T H E  S A I N T - V E N A N T  P R O B L E M  O F  
T H E  T O R S I O N  O F  E L A S T I C  P R I S M S  

Let fl be a simply-connected region occupied by the section of a prism, and let the boundary F = c~  be defined 
by (4.1). Solving the Saint-Venant problem reduces to finding a function u, which is harmonic in fL and on F satisfies 
the condition 

ulr(Xl,X2)=(x21 +x2~)/2, (x t ,x2)~F 

We shall seek an approximate solution of the problem in the form of a finite series (1.2), where Vk are functions 
of system (3.1). We find ak , the coefficients of the series (1.2), by applying to (2.10) the boundary analogue of 
the collocation method with weight functions (4.5). The vector al ~ . . . . .  aN t~ is a solution of (2.13). 

The calculations were carried out for various polygonal regions. The level lines of the function u and the 
collocation points (denoted by small circles) are shown in Figs 2 and 3. Figure 3 shows only one-quarter of the 
region, in view of its symmetry. There are as many basis functions of system (3.1) as there are collocation points. 

The calculations performed for a large number of basis functions (---90) for the region shown in Fig. 3 gave no 
indication that the method was numerically unstable. 
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